

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/23

Paper 2 AS Level Structured Questions

May/June 2016

MARK SCHEME

Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $@ \ \mathsf{IGCSE} \ \mathsf{is} \ \mathsf{the} \ \mathsf{registered} \ \mathsf{trademark} \ \mathsf{of} \ \mathsf{Cambridge} \ \mathsf{International} \ \mathsf{Examinations}.$

© UCLES 2016

				Cambridge Internation	al AS/A	Level – May/June 2016	9702	23	
1	(a)	sca	lars	energy, power and time				A1	
		vectors: momentum and weight					A1	[2]	
	(b)	(i)	(i) triangle with right angles between 120 m and 80 m, <u>arrows</u> in correct direction and result displacement from start to finish <u>arrow</u> in correct direction and labelled R		B1	[1]			
		(ii)	1.	average speed (= 200/	27) = 7.	$4\mathrm{ms^{-1}}$		A1	[1]
			2.	resultant displacement	(= [120 ²	$(2^2 + 80^2]^{1/2}) = 144 \text{ (m)}$		C1	
				average velocity (= 144	/27) =	5.3(3) m s ⁻¹		A1	
				direction (= tan ⁻¹ 80/12	0) = 34°	° (33.7)		A1	[3]
2	(a)	-	systematic: the reading is larger or smaller than (or varying from) the true reading by a constant amount			B1			
		ran	dom	: scatter in readings abo	ut the tr	ue reading		B1	[2]
	(b)	•	cisic	n: the size of the smalles	st divisio	on (on the measuring instrumen	t)		
		or 0.0	1 mr	n for the micrometer				B1	
		acc	urac	ey: how close (diameter)	value is	to the true (diameter) value		B1	[2]
3	(a)	, •		tional potential energy is s stored due to its positio	,	ergy/ability to do work of a <u>mas</u> It in a gravitational field	<u>s</u> that it	B1	
		kinetic energy is energy/ability to do work a object/body/mass has due to its speed/velocity/motion/movement			B1	[2]			
	(b)	(i)	s	= [(u+v)t]/2	or	acceleration = 9.8/9.75 (using	gradient)	C1	
				= [(7.8 + 3.9) × 0.4]/2	or	$s = 3.9 \times 0.4 + \frac{1}{2} \times 9.75 \times (0.4)$)2	C1	
			s	= 2.3(4) m				A1	[3]
		(ii)	а	= $(v - u)/t$ or gradient of	line			C1	
				= (7.8 – 3.9)/0.4 = 9.8 (9).75) ms	s^{-2} (allow ± $\frac{1}{2}$ small square in real	adings)	A1	[2]

Mark Scheme

Syllabus

Paper

Page 2

P	age 3	Mark Scheme Syllabu		Paper	
		Cambridge International AS/A Level – May/June 2016	9702	23	
	(iii	$KE = \frac{1}{2} mv^2$		C1	
		change in kinetic energy = $\frac{1}{2} mv^2 - \frac{1}{2} mu^2$			
		$= \frac{1}{2} \times 1.5 \times (7.8^2 - 3.9^2)$		C1	
		= 34 (34.22) J		A1	[3]
	(c) w	ork done = force × distance (moved) or <i>Fd</i> or <i>Fx</i> or <i>mgh</i> or <i>mgd</i> or <i>mg</i>	x	M1	
		= $1.5 \times 9.8 \times 2.3$ = 34 (33.8) J (equals the change in KE)		A1	[2]
4	(a) (r	esultant force = 0) (equilibrium)			
	th o	erefore: weight – upthrust = force from thin wire (allow tension in wire))		
		3 (N) – upthrust = 4.8 (N)		B1	[1]
	(b) di	fference in weight = upthrust or upthrust = 0.5 (N)			
		$0.5 = \rho ghA$ or $m = 0.5/9.81$ and $V = 5.0 \times 13 \times 10^{-6}$ (m ³)	3)	C1	
		ρ = 0.5/(9.81 × 5.0 × 13 × 10 ⁻⁶)		C1	
		$= 780 (784) \text{ kg m}^{-3}$		A1	[3]
5	(a) th	e <u>total</u> momentum of a system (of colliding particles) remains constan	t	M1	
		rovided there is no resultant external force acting on the system/isolated system	ed or	A1	[2]
	(b) (i	the <u>total</u> kinetic energy before (the collision) is equal to the total kinenergy after (the collision)	etic	B1	[1]
	(ii	$p (= mv = 1.67 \times 10^{-27} \times 500) = 8.4 (8.35) \times 10^{-25} \mathrm{Ns}$		A1	[1]
	(iii	1. $mv_A \cos 60^\circ + mv_B \cos 30^\circ$ or $m(v_A^2 + v_B^2)^{1/2}$		B1	
		2. $mv_A \sin 60^\circ + mv_B \sin 30^\circ$		B1	[2]
	(iv	8.35×10^{-25} or $500m = mv_A \cos 60^\circ + mv_B \cos 30^\circ$ and			
		$0 = mv_A \sin 60^\circ + mv_B \sin 30^\circ$ or using a vector triangle		C1	
		$v_{\rm A} = 250 \rm ms^{-1}$		A1	
		$v_{\rm B} = 430 \ (433) \rm m s^{-1}$		A1	[3]

		Cambridge International AS/A Level – May/June 2016 9702		
6	(a) oh	m is volt per ampere or volt/ampere		[1]
	(b) (i)	$R = \rho l/A$	B1	
		$R_{\rm P}=4\rho(2l)/\pi d^2$ or $8\rho l/\pi d^2$ or $R_{\rm Q}=\rho l/\pi d^2$ or ratio idea e.g. length is halved hence R halved and diameter is halved hence R is $1/4$	e C1	
		$R_{Q} (= 4\rho l/\pi 4d^{2}) = \rho l/\pi d^{2}$ = $R_{P}/8$ (= 12/8) = 1.5 Ω	A1	[3]
	(ii)	power = I^2R or V^2/R or VI	C1	
		= $(1.25)^2 \times 12 + (10)^2 \times 1.5$ or $(15)^2/12 + (15)^2/1.5$ or 15×11.25	C1	
		= (18.75 + 150 =) 170 (168.75) W	A1	[3]
	(iii)	$I_{\rm P}$ = (15/12 =) 1.25 (A) and $I_{\rm Q}$ = (15/1.5 =) 10 (A)	C1	
		$v_P/v_Q = I_P n A_Q e/I_Q n A_P e \text{ or } (1.25 \times \pi d^2)/(10 \times \pi d^2/4)$	C1	
		= 0.5	A1	[3]
7	(a) (i)	alter distance from vibrator to pulley alter frequency of generator (change tension in string by) changing value of the masses		
		any two	B2	[2]
	(ii)	points on string have <u>amplitudes</u> varying from maximum to zero/minimum	B1	[1]
	(b) (i)	60° or $\pi/3$ rad	A1	[1]

Mark Scheme

Syllabus

Paper

C1

Α1

[2]

(ii) ratio = $[3.4/2.2]^2$

= 2.4 (2.39)

Page 4

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9702	23

8 (a) α -particle is 2 protons and 2 neutrons; β^{\dagger} -particle is positive electron/positron α -particle has charge +2e; β^{\dagger} -particle has +e charge

α-particle has mass 4u; β-particle has mass (1/2000)u α-particle made up of hadrons;
$$β^+$$
-particle a lepton any three B3 [3]

(b) ${}^1_1 p \rightarrow {}^1_0 n + {}^0_1 \beta + {}^0_0 \nu$ all terms correct M1 all numerical values correct (ignore missing values on $ν$) A1 [2]

(c) (i) 1. proton: up, up, down/uud B1
2. neutron: up, down, down/udd B1 [2]

(ii) up quark has charge +2/3 (e) and down quark has charge -1/3 (e) total is +1(e) B1 [1]